

JNCC Report No. 248

T)

•

Ó

ii.

=

)

WILDLIFE AND POLLUTION: 1994/95 Annual Report

The **Institute of Terrestrial Ecology** is a component body of the Natural Environment Research Council. It was established in 1973, and now forms part of the Terrestrial and Freshwater Sciences Directorate of NERC.

ITE undertakes specialist ecological research on subjects ranging from micro-organisms to trees and mammals, from coastal habitats to uplands, from derelict land to air pollution. An understanding of the ecology of different species and of natural and man-made communities plays an increasingly important role in areas such as:

- monitoring ecological aspects of agriculture
- improving productivity in forestry
- controlling pests
- managing and conserving wildlife
- assessing the causes and effects of pollution
- rehabilitating disturbed sites

The staff can offer objective, impartial, advice on a wide range of topics, and can assess the impact of different land use options. ITE's applied and basic research contributes to the efficient use of the natural environment and provides information on which to base predictions of future trends.

This report should be cited as: Newton, I., Dale, L., Freestone, P., French, M.C., Malcolm, H., Osborn, D., Wright, J., Wyatt, C., & Wyllie, I. 1995. Wildlife and Pollution: 1994/95 Annual Report, Joint Nature Conservation Committee Report No. 248 (Institute of Terrestrial Ecology)

JNCC Report No. 248

WILDLIFE AND POLLUTION: 1994/95 Annual Report

I NEWTON, L DALE, P FREESTONE, MC FRENCH, H MALCOLM, D OSBORN, J WRIGHT, C WYATT & I WYLLIE

INSTITUTE OF TERRESTRIAL ECOLOGY (NATURAL ENVIRONMENTAL RESEARCH COUNCIL) JNCC PROJECT 018 (Contract F71-12-153) ITE PROJECT T08054c5

Annual report to Joint Nature Conservation Committee

Monks Wood Experimental Station Abbots Ripton Huntingdon Cambs PE17 2LS

July 1995

JOINT NATURE CONSERVATION COMMITTEE

-

7

1

)

)

3

0

9

9

9

REPORT DISTRIBUTION

KEI OKI	DISTRIBUTION
Report number	248
Contract number/JNCC project number	F71-12-153, Project 018
Date received	July 1995
Report title	Wildlife and pollution: 1994/95 annual report
Contract title	Wildlife and pollution
Contractor	Institute of Terrestrial Ecology (Natural Environment Research Council)
Restrictions	None, but contractors must be consulted before results are quoted
Distribution: Joint Nature Conservation Committee	Countryside Council for Wales

Distribution: Joint Nature Conservation Committee	ı	Countryside Council for Wales	
M.L. Tasker (nominated officer) Dr C.A. Galbraith Dr T.M. Reed	1+top copy & spares 1 copy 1 copy	HQ Library Dr M.E. Smith S Bareham A. Brown	1 copy 1 copy 1 copy 1 copy
Dr M. Vincent R. Walker JNCC report collection	1 copy 1 copy 2 copies	Regional Officers/libraries	1 copy each (total of 3)
English Nature		Others Draf. I. Nassata	2 .
HQ Library Dr A.F. Brown	1 copy 1 copy	Prof. I. Newton Prof. P.J. Newbould AT Smail (Copyright	3 copies 1 copy
Dr A. Cooke Dr K. Duff	1 copy 1 copy	Libraries) British Library	5 copies 1 copy
Scottish Natural Heritage		Chadwyk-Healey Ltd BIOSIS Waterston Library (SOC)	1 copy 1 copy 1 copy
HQ Library	1 copy	BTO Library	1 copy
Prof. M. Usher Dr G.P. Mudge Regional Directors/libraries	1 copy 1 copy 1 copy each	RSPB Library Alexander Library (EGI)	1 copy 1 copy
	(total of 4)	cc JNCC Publications Branc note file	ch - cover

CONTENTS

9 9

•

)

			Page
1	PRE	FACE AND SUMMARY	, 1
	1.1	Introduction	1
	1.2	Organochlorines and mercury in predatory birds	1
	1.3	Organochlorines and mercury in peregrine eggs	2
	1.4	Organochlorines and mercury in merlin eggs	2
	1.5	Organochlorines and mercury in golden eagle eggs	2
	1.6	Organochlorines and mercury in sea eagle eggs	2
	1.7.	Organochlorines and mercury in gannet eggs	2
	1.8	Rodenticide residues in Barn Owls	2
	1.9	Incident investigations during 1994	3
2	ORG	ANOCHLORINES AND MERCURY IN PREDATORY BIRDS	
	2.1	Introduction	4
	2.2	Results from 1994	4
	2.3	Long-term trends	5
	2.4	Conclusions	5
	2.5	References	5
3	ORG	ANOCHLORINES AND MERCURY IN PEREGRINE EGGS, 1994	
	3.1	Introduction	21
	3.2	Results	21
	3.3	Reference	21
4	ORG	ANOCHLORINES AND MERCURY IN MERLIN EGGS, 1994	
	4.1	Introduction	23

	4.2	Results	23
	4.3	Reference	23
5	ORG	ANOCHLORINES AND MERCURY IN GOLDEN EAGLE EGGS, 199	4
	5.1	Introduction	26
	5.2	Results	26
	5.3	Reference	26
6	ORG	ANOCHLORINES AND MERCURY IN SEA EAGLE EGGS	
	6.1	Introduction	28
	6.2	Results	28
7	ORG	ANOCHLORINES AND MERCURY IN GANNET EGGS, 1994	
	7.1	Introduction	29
	7.2	Results	29
	6.3	Reference	29
8	ROD	ENTICIDE RESIDUES IN BARN OWLS	
	8.1	Introduction	33
	8.2	Results	33-34
	8.3	Discussion	34-35
	8.4	References	35
9	INCII	DENT INVESTIGATIONS DURING 1994	
	9.1	Introduction	41
	9.2	Kent swan mortalities	41
	9.3	Cambridgeshire moorhen mortalities	<i>A</i> 1

1 PREFACE AND SUMMARY

1.1 Introduction

The Wildlife and Pollution contract covers a long-term monitoring programme to examine the levels of pollutants in some wildlife in Britain. The programme was started more than 30 years ago, when there were serious concerns over the effects of organochlorine insecticides and organomercury fungicides on several birds and mammals. This early work demonstrated the effects of the organochlorines, and eventually contributed to the ban on their use in this country and abroad. The programme has measured levels of these compounds in predatory and fish-eating birds since then. Investigations have also been made into the levels of polychlorinated biphenyls (PCBs), following their identification as pollutants in 1966. Mercury levels, derived from both agricultural and industrial sources, have also been tracked. In addition, the contract supports a wildlife incident investigation service, which can examine the causes of unexpected mortality incidents (that are not obviously related to oil pollution or to farm chemicals). In recent years, investigations have been made into the effects of the newest generation of rodenticides on barn owls.

Annual reports give an interim summary of results derived from both agricultural and industrial sources. Every 3 years these annual results are gathered together into a more substantial report in which they are integrated with previous findings. In addition, results are periodically published in the scientific literature. Recent key papers are listed in this report under sub-project summaries.

The Wildlife and Pollution contract was the subject of scientific assessment within JNCC's rolling programme of peer review in autumn 1993.

Each subproject within the Wildlife and Pollution contract is summarised below. Each is dependent on the provision of material from amateur naturalists and other interested parties, and it is not always possible to obtain desired material for analysis, especially from remote areas.

1.2 Organochlorines and mercury in predatory birds

The main objective of this work was to analyse the bodies of predatory and fish-eating birds, supplied by members of the public, in order to continue the monitoring of organochlorine and mercury residues in livers. This enables us to keep a watch on the effects of previous hardwon withdrawals of permitted uses of some of these chemicals, and to examine geographical variation in residues. For 1994, the livers from 194 birds were analysed, including those from 33 kestrels, 98 sparrowhawks, 12 herons, and 51 birds of various other species. These birds came from various localities in England, Scotland and Wales. Over the whole monitoring period (1963-94), the overall data for most species have revealed significant long-term downward trends in residues (except for PCBs in three species). Declines may be levelling off for DDE (the main metabolite of DDT) and HEOD (derived from aldrin and dieldrin). Two significant changes in geometric mean levels between 1993 and 1994 were noted, involving decreases in HEOD residues in kestrels and herons. It is impossible to say whether these differences reflected real year-to-year changes in exposure.

1.3 Organochlorines and mercury in peregrine eggs

Eggs from 30 peregrine clutches were analysed in 1994, from various parts of England, Scotland and Wales. The organochlorine levels in British peregrines continue to decline, but occasional high PCB levels appear.

1.4 Organochlorines and mercury in merlin eggs

Eggs from 55 merlin clutches were analysed in 1994, from various parts of England, Scotland and Wales. The results confirm that the merlin remains the most contaminated of the British raptors, but residue levels are declining. Mercury in eggs from the Northern Isles continues to be at high levels.

1.5 Organochlorines and mercury in golden eagle eggs

Eggs from seven clutches (six from Scotland and one from England) were analysed. These confirm the low levels of contamination in eggs from inland districts found in recent years.

1.6 Organochlorines and mercury in sea eagle eggs

The one egg obtained in 1994 (from an inland district) contained low levels of pollutants.

1.7 Organochlorines and mercury in gannet eggs

Eggs from four colonies were analysed in 1994. Residue levels were low and within the range of previous ones from these colonies. Over the long term (1971-94), eggs from Ailsa Craig showed declines in all residues, those from Bass Rock showed declines in HEOD and DDE, and those from Hermaness in DDE. Eggs from St Kilda showed the lowest levels of contaminants and no long-term trends. The gannet is the only British seabird in which residue levels have been monitored continuously over the past 25 years, so has become a key indicator species of marine pollution.

1.8 Rodenticides in barn owls

The aims of this study were to find (i) to what extent barn owls in Britain are contaminated with certain rodenticide residues, and (ii) whether such residues are likely to cause significant mortality. As barn owl numbers are thought to have declined this century, it is important to assess any role that secondary poisoning from rodenticides might have on the British population. The second-generation anticoagulant rodenticides (currently difenacoum, bromadiolone, brodifacoum, flocoumafen) are likely to pose the greatest threat. These are rapidly replacing Warfarin and are both more toxic and more persistent. Ninety-seven birds were examined in 1994. The residues of one or more rodenticides were found in the livers of 28 (29%). The proportion of contaminated owls has remained at around one-third for the past five years, following an earlier apparent increase. Despite widespread exposure to these chemicals, there is yet no evidence that these chemicals have caused appreciable mortality or have had any serious impact on barn owl numbers in Britain.

1.9 Incident investigations during 1994-95

No major mortality incidents occurred during the year that could be attributed to pollutants other than oil. However, two swans and two moorhens were received for examination, and no obvious cause of death could be ascertained.

INSTITUTE OF TERRESTRIAL ECOLOGY (NATURAL ENVIRONMENT RESEARCH COUNCIL)

JNCC/NERC CONTRACT HF3/08/01 JNCC PROJECT 018 (Contract F71-12-153) ITE PROJECT T08054c5

Annual report to the Joint Nature Conservation Committee

WILDLIFE AND POLLUTION

Part 2 Organochlorines and mercury in predatory birds, 1994

I Newton, L Dale, P Freestone, M C French, J Wright, C Wyatt & I Wyllie

Monks Wood Abbots Ripton Huntingdon Cambs PE17 2LS

2 ORGANOCHLORINES AND MERCURY IN PREDATORY BIRDS

2.1 Introduction

The main objective of this work was to analyse the carcasses of predatory birds, supplied by members of the public, in order to continue the monitoring of organochlorine and metal residues in livers. The chemicals of interest included DDE (from the insecticide DDT). HEOD (from the insecticides aldrin and dieldrin), PCBs (polychlorinated biphenyls from industrial products) and Hg (mercury from agricultural and industrial sources). Throughout this section the levels of organochlorines are given as ppm in wet weight and of mercury as ppm in dry weight.

The main species involved included the sparrowhawk and kestrel, representing the terrestrial environment, and the fish-eating heron, kingfisher and great-crested grebe, representing the aquatic environment. The findings from various other species received during the year are also included.

2.2 Results from 1994

During the past year, the livers from 194 birds were analysed, including those from 33 kestrels, 98 sparrowhawk, 12 herons, 1 kingfisher, 1 great-crested grebe and 47 others. These totals included some birds which had died in earlier years, but which were analysed in the current year. The results from all these birds are listed in Table 1, and the geometric means for each chemical from the main species (1994 specimens only) are given in Table 2.

Several birds from 1994 contained unexpectedly high levels of pollutants (for their species). They included one kestrel (from Kent) with 13 ppm DDE, one kestrel (from Strathclyde) with 79 ppm PCBs and three kestrels (two from Grampian and one from Essex) with 7 ppm Hg; three sparrowhawks (from Kent, Essex and Humberside) with 5-6 ppm HEOD, seven sparrowhawks (from various counties) with 33-197 ppm PCBs, and five sparrowhawks (from various counties) with 10-19 ppm Hg; one Peregrine (from Lothian) with 95 ppm PCBs and 13 ppm Hg; one short-eared owl (from Norfolk) with 7 ppm DDE; one merlin (from Orkney) with 12 ppm Hg, one heron (from Orkney) with 126 ppm Hg, and one bittern (from Suffolk) with 40 ppm Hg. Hence, although the levels of these various pollutants have generally declined since the 1970s (see below), occasional heavily contaminated birds continue to appear.

Another major change of recent years has been the increasing relative importance of PCBs. In some species these chemicals have not declined since the 1970s (see below), so in many specimens they now predominate among organochlorine residues.

The high level of mercury in the merlin was in line with previous findings from the northern Isles (Newton *et al.* 1988) and it is interesting that the heron from Orkney should also show high mercury levels. We assume that this is natural in the area, resulting from high levels of mercury in seawater and (via sea spray) on land.

Out of 12 comparisons, two significant differences in geometric mean values were found between the 1993 and 1994 results. Both include a reduction in HEOD levels, in kestrel and heron respectively (Table 3). It is impossible to say whether these differences reflected real

changes in exposure, especially as levels were generally low. Because only one kingfisher was received in 1994, no comparisons could be made for this species.

2.3 Long-term trends

An earlier analysis of long-term trends in residue levels in the five main species to 1988 was included in the 1989 report, and to 1991 in the 1992 report (see also Newton *et al.* 1993). The analysis has been repeated here, incorporating the extra data from 1992-1994. The nationwide trends for each species are shown in Figures 1-5 by 3-year moving geometric means. Analyses for DDE and HEOD were started in 1963-64, analyses for PCB in 1967-69, and for Hg in 1969-80, depending on species.

In each case the significance of the long-term trend was assessed by regression analyses of individual residue levels on years (Table 4), covering the whole analytical period for each chemical. Separate regression analyses covered the last six years (1989-94) in order to examine the most recent trends, independently of earlier results.

Among the terrestrial-feeders, the bird-eating sparrowhawk had generally higher levels of most residues than the mammal-eating kestrel (Figure 1 & 2). Among the fish-eaters, the heron contained the highest levels of all residues (Figure 3), while the great-crested grebe contained the lowest.

Over the whole monitoring period, the overall data for most species revealed significant downward trends in residues (Figures 1-5, Table 4). The only exceptions were kestrel which showed no long-term decline in PCB levels, and kingfisher and grebe in which the downward trends in PCB (kingfisher only) and mercury (both species) were not statistically significant. However, samples for these species were much smaller than for the others.

Over the shorter period (1989-94), when levels of most chemicals were generally low, few significant trends emerged. They included an increase in HEOD residues in sparrowhawk, increases in PCBs in sparrowhawk and great-crested grebe (but on small samples), and increases in mercury in sparrowhawk, kestrel and kingfisher.

2.4 Conclusions

•

The general picture is of long-term declines in pesticide and mercury residue levels. This would be expected from the progressive restrictions placed on the use and release over the years of the parent chemicals. In contrast, PCB levels have shown significant long-term declines in only three of the five species, and in two showed a significant increase over the past six years. In view of the PCB situation, and the continuing occurrence of occasional high levels of all chemicals, it seems prudent to maintain the monitoring for some further years. As this programme is now the longest-running of its kind anywhere in the world, the findings stimulate considerable interest internationally, as well as in Britain.

2.5 References

Newton, I. & Haas, M.B. 1988. Pollutants in Merlin eggs and their effects on breeding. Brit. Birds. 81: 258-268.

Newton, I, Wyllie, I. & Asher, A. 1993. Long term trends in organochlorine and mercury residues in some predatory birds in Britain. Environ. Pollut. 79: 143-151.

Table 1. Levels of organochlorines (ppm in wet weight) and mercury (ppm in dry weight) in the livers of predatory birds analysed between April 1994 and March 1995.

ND=none detected; J=juvenile in first year; A=adult other than first year; M=male; F=female; D & G=Dumfries & Galloway;

H & W=Hereford & Worcester.

Specimen no.	Date Found	County	Age	Sex	pp'-DDE	HEOD	PCB	Hg
Kestrel (Fa	lco tinnun	iculus)					ew.	
11420	Jun 93	D & G	J	M	0.013	0.083	0.185	0.654
11535	Sep 93	Lincolnshire	-	-	0.069	0.207	0.435	1.225
11603	Nov 93	Strathclyde	J	M	0.030	0.051	0.782	2.771
11468	Dec 93	Lincolnshire	-	-	4.092	0.490	11.172	2.122
11422	Jan 94	Salop	J	F	0.097	0.258	2.629	2.262
11424	Jan 94	Grampian	J	M	3.656	0.143	9.262	6.675
11452	Feb 94	Sussex	J	F	0.026	0.074	0.746	0.389
11453	Feb 94	Essex	J	M	9.968	0.705	11.950	2.301
11455	Feb 94	Cambs	Α	M	0.335	0.275	0.757	0.291
11508	Mar 94	Bucks	J	M	9.686	0.278	5.207	0.966
11531	Apr 94	Oxfordshire	J	F	0.086	0.132	2.481	1.594
11552	Apr 94	Lothian	Α	F	0.007	0.038	0.297	0.623
11561	May 94	Suffolk	J	M	0.081	0.142	0.765	4.791
11593	Jun 94	Durham	Α	M	0.469	0.115	2.476	1.162
11595	Jul 94	Leics	Α	M	0.112	0.366	3.946	2.245
11609	Jul 94	Lothian	J	F	0.534	0.159	0.675	0.615
11659	Jul 94	Devon	Α	M	0.022	0.229	0.421	1.547
11611	Aug 94	Midlothian	J	F	0.014	0.023	0.201	1.495
11620	Aug 94	D & G	J	F	0.013	0.052	0.276	0.524
11630	Aug 94	Berkshire	J	F	0.008	0.021	0.265	0.837
11649	Sep 94	Cambs	J	F	0.022	0.652	0.408	0.822
11650	Oct 94	Essex	Α	M	2.901	1.029	4.600	0.828
11653	Oct 94	Lincolnshire	J	F	0.087	0.076	2.125	1.747
11663	Oct 94	Cumbria	J	F	0.034	0.041	0.580	3.409
11670	Oct 94	Kent	J	M	13.243	1.498	3.979	1.024
11672	Nov 94	Cambs	J	F	5.912	0.294	4.118	2.290
11683	Nov 94	Gwent	A	M	0.062	0.129	2.492	0.448
11685	Nov 94	Essex	J	F	0.084	0.164	0.976	7.398
11694	Nov 94	Essex	A	M	0.117	0.096	0.374	0.355
11697	Nov 94	Lincolnshire	J	M	0.026	0.014	0.101	0.924

Specimen no.	Date Found	County	Age	Sex	pp'-DDE	HEOD	PCB	Hg
Kestrel (Fa	lco tinnun	culus) cont.				it.		
11711	Nov 94	Wilts	J	F	0.021	0.028	0.982	0.598
11688	Dec 94	Grampian	J	F	0.214	0.094	3.560	6.518
11708	Dec 94	Strathclyde	J	F	0.104	0.028	79.018	0.838
Sparrowha	wk (<i>Acci</i> į	oiter nisus)						
11573	Jul 83	Tyne & Wear	J	M	0.036	0.026	0.387	ND
11570	Feb 84	N'humberland	J	M	0.021	0.016	0.067	ND
11571	Dec 84	Cumbria	J	M	0.376	0.061	1.495	1.799
11574	Nov 85	N'humberland	J	M	0.224	0.063	0.958	1.641
11567	Aug 86	N'humberland	J	M	0.075	0.052	0.549	2.749
11575	Mar 88	N'humberland	J	M	5.944	0.385	34.209	10.603
11572	Aug 89	Tyne & Wear	J	F	0.022	0.021	0.361	0.340
11568	Aug 91	N'humberland	J	M	0.039	0.012	0.107	0.490
11576	Aug 91	Tyne & Wear	J	M	0.131	0.045	0.960	3.015
11370	Feb 92	N'humberland	Α	M	0.748	0.085	1.538	6.128
11368	Mar 92	Strathclyde	J	M	0.188	0.037	1.632	5.161
11367	Nov 92	Strathclyde	J	F	0.474	0.054	1.622	5.161
11371	Jul 93	Salop	J	F	0.250	0.034	0.072	0.515
11369	Aug 93	Strathclyde	J	F	0.285	0.059	0.727	4.478
11379	Sep 93	Oxfordshire	Α	M	6.749	0.268	23.195	1.386
11469	Sep 93	H & W	J	F	0.172	0.081	0.122	1.054
11466	Oct 93	Gwynedd	J	F	0.595	0.076	4.102	3.497
11467	Oct 93	Lincolnshire	J	M	0.088	0.038	0.090	0.218
11569	Oct 93	N'humberland	J	F	2.539	2.692	7.258	4.243
11384	Nov 93	Essex	J	M	2.246	0.096	0.080	0.713
11385	Nov 93	Middlesex	J	M	ND	0.186	27.422	0.324
11389	Nov 93	Bucks	J	F	0.876	0.047	1.280	0.423
11402	Nov 93	Warwicks	J	M	7.193	0.197	4.136	1.155
11474	Nov 93	H & W	Α	F	0.101	0.030	0.729	0.307
11440	Jan 94	Avon	J	F	0.341	0.031	0.798	0.353
11443	Jan 94	Dorset	Α	M	0.353	0.124	1.058	1.636
11447	Jan 94	Norfolk	J	M	0.571	0.051	1.636	2.591
11473	Jan 94	Gwynedd	J	F	2.881	0.081	4.471	9.671
11503	Jan 94	Grampian	J	F	0.373	0.034	0.062	4.016
11457	Feb 94	Lincolnshire	Α	F	0.421	0.267	5.129	1.687
11458	Feb 94	Notts	J	M	1.177	0.238	1.251	1.026
11478	Feb 94	Dorset	Α	F	5.134	0.096	10.516	4.979

•

•

Specimen no.	Date Found	County	Age	Sex	pp'-DDE	HEOD	PCB	Hg
C	1- (4 1 - 1					.9		
Sparrowna	WK (Accıpı	iter nisus) cont.						
11485	Feb 94	Lincolnshire	J	F	0.453	0.042	0.198	0.996
11486	Mar 94	Essex	J	F	14.628	0.344	5.490	3.344
11490	Mar 94	Grampian	A	M	2.030	0.046	1.399	3.985
11492	Mar 94	Essex	J	F	11.481	5.388	13.061	7.505
11497	Mar 94	Herts	Α	M	10.944	0.266	1.622	1.943
11498	Mar 94	Strathclyde	J	M	7.375	0.973	16.727	4.955
11500	Mar 94	Dorset	J	F	1.183	0.042	0.604	4.545
11502	Mar 94	Cambs	J	F	1.314	0.164	0.579	0.641
11505	Mar 94	Devon	Α	F	7.615	1.596	48.314	0.638
11506	Mar 94	Norfolk	J	F	1.700	0.060	0.985	1.054
11507	Mar 94	D & G	J	M	0.417	0.026	2.453	5.494
11517	Mar 94	Herts	J	\mathbf{F}	3.396	0.673	84.472	2.502
11537	Mar 94	Cambs	=		0.969	0.109	0.443	1.413
11544	Mar 94	Surrey	J	F	3.695	0.635	196.748	1.796
11555	Mar 94	Kent	J	F	11.502	4.644	7.481	3.178
11563	Mar 94	Highland	A	F	0.204	0.041	0.509	1.412
11520	Apr 94	Oxfordshire	Α	F	0.244	0.047	7.484	2.985
11521	Apr 94	Middlesex	J	F	1.790	2.656	7.127	10.473
11522	Apr 94	Powys	J	M	5.193	0.390	84.790	18.521
11526	Apr 94	Surrey	J	F	6.330	4.040	32.827	3.217
11527	Apr 94	Sussex	J	M	18.162	0.303	20.951	4.826
11528	Apr 94	Devon	J	M	5.982	2.646	34.997	7,324
11532	Apr 94	Cheshire	J	\mathbf{F}	2.077	0.146	4.514	3.334
11540	Apr 94	Sussex	J	M	3.020	0.089	20.952	3.678
11541	Apr 94	Dyfed	Α	M	0.184	0.090	0.739	3.868
11543	Apr 94	D & G	Α	M	0.159	0.035	0.243	ND
11579	Apr 94	Sussex	A	M	8.030	0.257	4.447	1.950
11560	May 94	Beds	J	M	2.081	0.128	5.083	2.551
11566	May 94	Fife	J	F	5.125	1.674	14.349	7.711
11585	May 94	Dorset	J	F	0.365	0.089	1.541	4.954
11581	Jun 94	Orkney	Α	\mathbf{F}	0.245	0.030	0.803	5.276
11587	Jun 94	Wilts	J	F	0.425	0.037	0.806	2.142
11590	Jun 94	Humberside	J	\mathbf{F}	5.593	6.088	24.476	7.935
11591	Jun 94	Central	J	F	3.022	0.810	13.102	13.806
11605	Jul 94	Oxfordshire	Α	\mathbf{F}	0.391	0.122	4.523	2.018
11606	Jul 94	Sussex	J	M	5.597	0.555	10.306	2.257
11612	Jul 94	Dyfed	J	\mathbf{F}	0.023	0.008	0.180	1.280
11613	Jul 94	Dyfed	Α	F	3.781	0.306	11.658	3.331

3

-

-

•

•

•

1

•

•

•

•

•

Ĵ

4

ラ コ ラ ラ ラ ラ ラ

Specimen no.	Date Found	County	Age	Sex	pp'-DDE	HEOD	PCB	Hg
Sparrowhay	wk (<i>Accipi</i>	iter nisus) cont.				¥)		
1:	•	·	Ť	M	2 226	0.060	1 510	2 127
11616	Aug 94	Norfolk	J	M	2.236	0.068	1.518	3.127
11617	Aug 94	H & W	J	M	0.051	0.020	0.198	1.622
11619	Aug 94	Sussex	J	F	0.319	0.089	3.649	1.309
11621	Aug 94	D & G	J	F	1.546	0.073	1.959	3.890
11631	Aug 94	Leics	J	F	0.264	0.036	0.908	0.570
11657	Aug 94	Northants	J	F	0.048	0.010	0.083	0.852
11636	Sep 94	Herts	J	F	0.092		0.131	0.357
11637	Sep 94	Cheshire	J	M	0.033	0.031	0.240	0.455
11640	Sep 94	Lincolnshire	J	M	0.970	0.036	0.373	0.364
11648	Sep 94	Cambs	J	M	3.660	0.623	2.758	0.293
11659	Sep 94	Dyfed	J	F	0.279	0.024	1.485	0.214
11660	Sep 94	D & G	J	F	0.055	0.017	1.087	2.468
11689	Sep 94	Grampian	J	F	0.249	0.013	0.529	1.006
11690	Sep 94	Grampian	J	M	0.982	0.021	0.416	2.248
11656	Oct 94	Grampian	J	F	1.637	0.040	1.010	0.321
11662	Oct 94	Cambs	J	M	0.259	0.009	0.211	0.627
11684	Oct 94	Gwynedd	J	M	0.100	0.020	0.388	1.071
11693	Oct 94	Oxfordshire	J	M	0.095	0.031	1.278	1.396
11682	Nov 94	Derbyshire	J	M	0.085	0.021	0.550	2.975
11691	Nov 94	Cambs	J	M	0.611	0.020	0.988	0.442
11696	Nov 94	Herts	J	F	4.969	0.140	13.331	2.598
11699	Nov 94	Hampshire	A	F	6.201	0.493	20.899	1.545
11700	Nov 94	Warwicks	J	M	2.215	0.168	3.534	2.141
11702	Nov 94	Derbyshire	J	M	1.329	0.193	4.668	2.807
11705	Nov 94	Grampian	J	M	1.369	0.028	4.648	1.196
11706	Dec 94	Lancashire	Α	M	0.335	0.036	6.644	1.170
11713	Dec 94	Salop	J	M	0.358	0.032	0.601	2.212
11715	Dec 94	Northants	J	F	0.197	0.021	0.205	1.765
Peregrine I	Falcon (Fa	ilco peregrinus)						
11421	May 93	D & G	J	F	0.201	0.025	0.524	0.723
11438	Jan 94	Highland	-	-	0.055	0.029	0.184	0.289
11655	May 94	Lothian	J	M	4.990	3.365	95.143	13.254
11610	Aug 94	Avon	Α	M	0.682	0.120	18.770	0.096
11671	Oct 94	Wales	Α	M	0.672	0.051	1.047	1.994

3

,,,,,,

9

•

-

Specimen no.	Date Found	County	Age	Sex	pp'-DDE	HEOD	РСВ	Hg
Merlin (Fa	lco colum	barius)					!	
11513	Mar 94	Orkney	_	-	2.203	0.232	5.275	11.928
11681	May 94	Derbyshire	Α	F	1.450	0.212	1.810	2.845
11596	Jun 94	Borders	Α	F	1.711	0.980	2.061	4.559
11597	Jun 94	Borders	J	() 2;	0.146	0.024	0.155	0.511
11598	Jun 94	Borders	J	(#)	0.306	0.030	0.217	0.123
11599	Jun 94	Borders	J	:=:	0.203	0.028	0.186	0.498
11600	Jun 94	Borders	J	: <u>~</u>	0.100	0.032	0.186	0.132
Hobby (Fa	lco subbui	teo)						
11559	May 94	Glos	Α	F	2.314	0.149	10.848	1.085
Golden Ea	gle (Aquil	a chrysaëtos)						
11594	Jun 94	Western Isles	J	F	0.096	0.012	2.005	0.024
Buzzard (A	Buteo bute	0)						
11454	Jan 94	Cumbria	Α	F	0.015	0.020	0.020	0.128
11479	Feb 94	Kent	J	F	0.044	0.043	ND	2.160
11483	Feb 94	W. Midlands	J	M	ND	0.013	ND	ND
11547	Mar 94	Avon	Α	F	0.016	0.020	1.786	0.220
11529	Apr 94	Norfolk	-	300	0.518	0.056	1.000	0.176
11550	Apr 94	Powys	-	020	0.031	0.016	0.308	0.384
11551	Apr 94	Powys	-	-	0.006	0.013	0.608	0.927
11554	May 94	Strathclyde	J	F	0.039	0.011	1.604	0.824
11578	Jun 94	Clwyd	Α	F	0.008	0.010	0.083	0.242
11589	Jun 94	Cornwall	J	M	0.012	0.034	0.815	0.694
11634	Aug 94	Glos	A	F	0.046	0.014	1.177	0.192
Red Kite (Milvus mi	lvus)						
11514	Apr 94	Wales	-	Œ	0.096	0.099	2.960	0.129
11556	May 94	Wales	-	· 55	0.077	0.014	0.593	ND
11580	May 94	Wales	J	Sec.	0.137	0.086	5.115	ND
11601	Jun 94	Wales	J	38	0.010	0.007	0.312	ND

-

•

,

Specimen no.	Date Found	County	Age	Sex	pp'-DDE	HEOD	PCB	Hg
Marsh Hai	rrier (<i>Circ</i>	eus aeruginosus)						
11635	Aug 94	Norfolk	J	F	0.453	0.031	0.184	0.397
Hen Harri	er (<i>Circus</i>	cyaneus)						
11442	Jan 94	Lancashire	J	F	0.057	0.026	0.086	1.164
11687	Nov 94	Lincolnshire	Α	F	0.017	0.004	0.310	ND
Montagu's	Harrier (Circus pygargus)				C	
11607	Jul 94	Norfolk	J	M	0.468	0.129	1.459	0.102
11608	Jul 94	Norfolk	J	F	0.304	0.019	0.187	0.084
Long-eared	l Owl (Asi	io otus)						
11441	Jan 94	Cambs	J	F	0.044	0.019	ND	0.171
11482	Feb 94	Wiltshire	Α	F	0.062	0.013	1.475	0.044
11504	Mar 94	Leics	Α	F	5.989	0.275	11.116	7.119
11519	Mar 94	Cambs	A	F	0.219	0.024	0.925	0.632
Short-eare	d Owl (As	io flammeus)						
11588	Apr 94	Norfolk	J	F	7.006	0.079	13.788	3.499
11582	May 94	Orkney	Α	M	0.158	0.010	0.213	0.693
11583	May 94	Orkney	Α	M	0.108	0.006	0.231	1.146
11604	Jul 94	Isle of Man	J	M	0.327	0.037	1.017	1.118
11701	Nov 94	Lincolnshire	Α	M	2.180	0.027	6.551	1.580
Little Owl	(Athene n	octua)						
11545	Apr 94	Surrey	Α	F	0.016	0.020	1.786	0.225
11584	Jun 94	Norfolk	Α	F	0.104	0.005	0.435	0.899
11602	Jul 94	Cambs	Α	F	0.268	0.006	13.721	1.198
Heron (Ara	dea cinere	<i>a</i>)						
11450	Jan 94	Tayside	Α	F	0.527	0.100	1.741	10.016
11480	Feb 94	Orkney	Α	F	1.541	0.029	18.338	125.933
11481	Feb 94	Orkney	J	M	0.592	0.038	15.660	20.539

Specimen	Date	County	Age	Sex	pp'-DDE	HEOD	PCB	Hg
no.	Found				PF			
Heron (Arde	ea cinerea) cont.				jt.		
11489	Mar 94	Clwyd	J	F	0.488	0.047	1.398	11.213
11499	Mar 94	Norfolk	Α	M	0.842	0.152	4.248	7.378
11530	Mar 94	Orkney	J	F	0.673	0.028	3.582	10.730
11577	Jun 94	Oxfordshire	J	M	0.263	0.070	0.920	0.507
11582	Jun 94	Cambs	J	M	0.772	0.513	0.920	0.209
11614	Jul 94	Dyfed	J	F	0.026	0.003	0.153	0.138
11615	Jul 94	Dyfed	J	F	0.035	0.020	0.579	3.293
11623	Aug 94	Dyfed	J	M	0.036	0.022	0.387	3.751
11698	Nov 94	Highland	J	F	0.018	0.012	0.319	3.030
Bittern (<i>Bo</i>	taurus ste Feb 94	ellaris) Suffolk	A	M	0.180	0.004	0.586	40.102
Kingfisher	•	tthis) Humberside	J	F	0.384	0.410	7.244	2 225
11051	Sep 94	Hulliberside	J	Г	0.364	0.410	7.244	2.225
Great-crest	ed Grebe	(Podiceps crista	tus)					
11538	Feb 94	Lincolnshire	177)),	1.577	0.022	16.194	9.227
11536	Mar 94	H & W	-	-	0.163	0.002	1.172	3.838
11710	Dec 94	Derbyshire	A	F	1.326	0.017	20.038	9.270

Table 2. Geometric mean levels of pollutants in the various species in Table 1, for 1994 specimens only.

				5
Y	HEOD	pp'- DDE	PCB	Hg
(9)				
Kestrel				
Mean	0.11	0.09	1.09	1.33
N	22	22	22	22
Range within 1 SE	0.09-0.15	0.06-0.14	0.80-1.50	1.13-1.57
Sparrowhawk				y"
Mean	0.11	0.94	2.25	1.74
N	73	73	73	73
Range within 1 SE	0.09-0.14	0.77-1.14	1.82-2.77	1.49-2.04
Heron				
Mean	0.04	0.22	1.46	3.91
N	12	12	12	12
Range within 1 SE	0.03-0.06	0.14-0.36	0.95-2.24	2.22-6.88
Great-crested Grebe				
Mean	0.01	0.7	7.25	6.9
N	3	3	3	3
Range within 1 SE	0.004-0.02	0.34-1.45	2.91-18.05	5.15-9.25

Note: none detected values were taken as 0.001 for all residues

Table 3. Comparison of geometric mean residue levels (log values) from birds collected in 1993 and 1994.

t-values are shown. Minus values indicate a decrease and plus values an increase from 1993. *=P<0.05; **=P<0.01; ***=P<0.001.

	HEOD	pp'-DDE	PCB	Hg
Sparrowhawk	t ₁₈₁ =-1.92	$t_{181} = +0.42$	$t_{181} = -1.18$	$t_{181} = +0.25$
Kestrel	$t_{81} = -2.23*$	$t_{81} = -1.13$	$t_{81} = -1.54$	$t_{81} = +0.91$
Heron	$t_{27} = -2.37*$	$t_{27} = -1.08$	$t_{27} = -1.58$	$t_{27} = -1.63$
Great-crested Grebe	$t_4 = -1.69$	$t_4 = +1.02$	$t_4 = +1.57$	$t_4 = +0.93$

Note: None detected values were taken as 0.001 for all residues

Table 4. Trends in pollutant levels in livers of predatory birds during 1963 - 1994 and 1989 - 1994. Figures show sample sizes (N) and linear regression coefficients (b) based on log values regressed against year. *P = <0.05; **P = <0.01; ***P < 0.001; ns = not significant.

Υ.		1963	3 - 1994	1989 - 1994		
		N	b	N	b	
Sparrow	hawk					
-	HEOD	1524	-0.0326 **	594	0.0443 *	
4	pp'-DDE	1523	-0.3760 **	594	-0.0001 ns	
	PCB	1480	-0.0072 *	594	0.0574 *	
	Hg	1279	-0.0298 **	573	0.1267 ***	
Kestrel						
	HEOD	1289	-0.0351 **	293	0.0293 ns	
	pp'-DDE	1316	-0.0432 **	293	-0.0525 ns	
	PCB	1175	0.0036 ns	293	-0.0376 ns	
	Hg	984	-0.0389 **	293	0.2397 ***	
Heron						
	HEOD	769	-0.0510 **	110	0.0312 ns	
	pp'-DDE	778	-0.0442 **	110	0.0057 ns	
	PCB	645	-0.0242 **	110	0.0675 ns	
	Hg	482	-0.0238 **	110	-0.0439 ns	
Kingfish	ner					
	HEOD	199	-0.0229 **	42	0.1050 ns	
	pp'-DDE	200	-0.0440 **	42	0.0786 ns	
	PCB	194	-0.0165 ns	42	0.1055 ns	
	Hg	121	-0.0008 ns	42	0.1474 **	
Great-ci	rested Grebe					
	HEOD	158	-0.024293 **	17	0.0400 ns	
	pp'-DDE	179	-0.0216 **	17	0.1841 ns	
	PCB	166	-0.0291 **	17	0.2365 *	
	Hg	98	-0.0126 ns	17	0.0627 ns	

Notes:

Analyses for Hg in Sparrowhawk, Kestrel, and Heron were started in 1970, in Kingfisher in 1980 and in Great-crested Grebe in 1979.

Analyses for PCBs in Sparrowhawk, Kestrel and Heron were started in 1967, and in Kingfisher and Great-crested Grebe in 1968.

ppm HEOD ppm PCB 0.0 0.5 7.5 7.0 Year ppm Hg ppm DDE Year <u>ج</u> **-**

Figure 1. Trends in pollutant residues in livers of Sparrowhawks, 1963-1994.

Three year moving geometric means with one geometric standard error on either side.

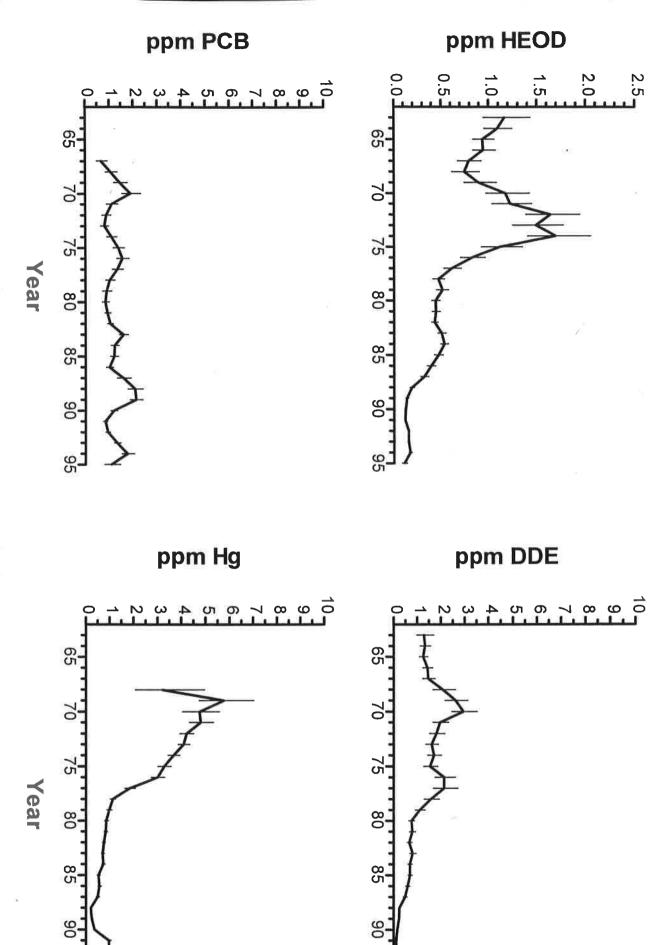


Figure 2. Three year moving geometric means with one geometric standard error on either side. Trends in pollutant residues in livers of Kestrels, 1963 - 1994.

95

ppm HEOD ppm PCB 10, . 199 ppm DDE ppm Hg ထ

Year

Year

Figure 3. Trends in pollutant residues in livers of Herons, 1963-1994.
Three year moving geometric means with one geometric standard error on either side.

Eg

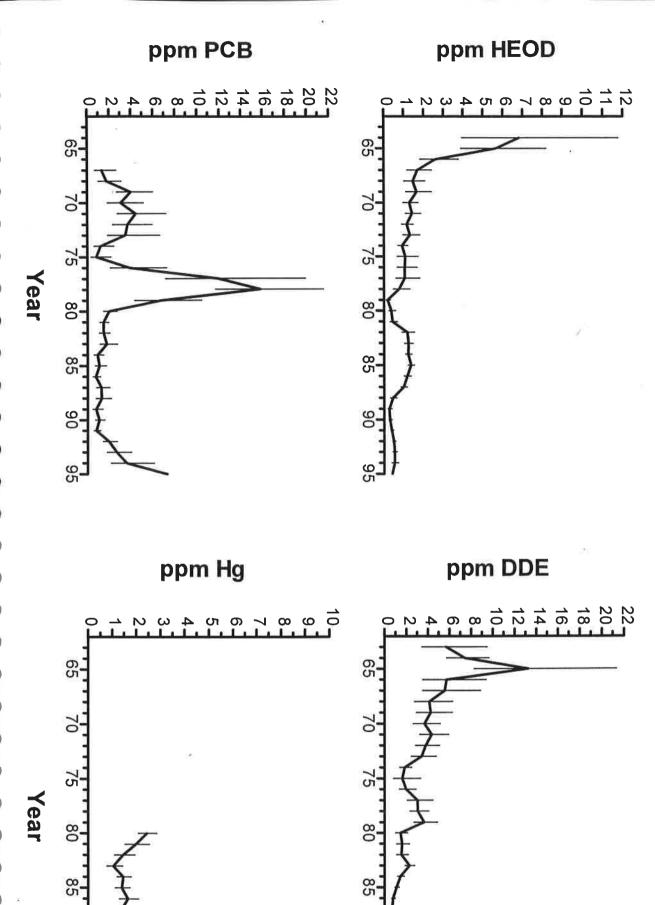


Figure 4. Trends in pollutant residues in livers of Kingfishers, 1963 - 1994 Three year moving geometric means with one geometric standard error on either side.

£₂₈

9

£8

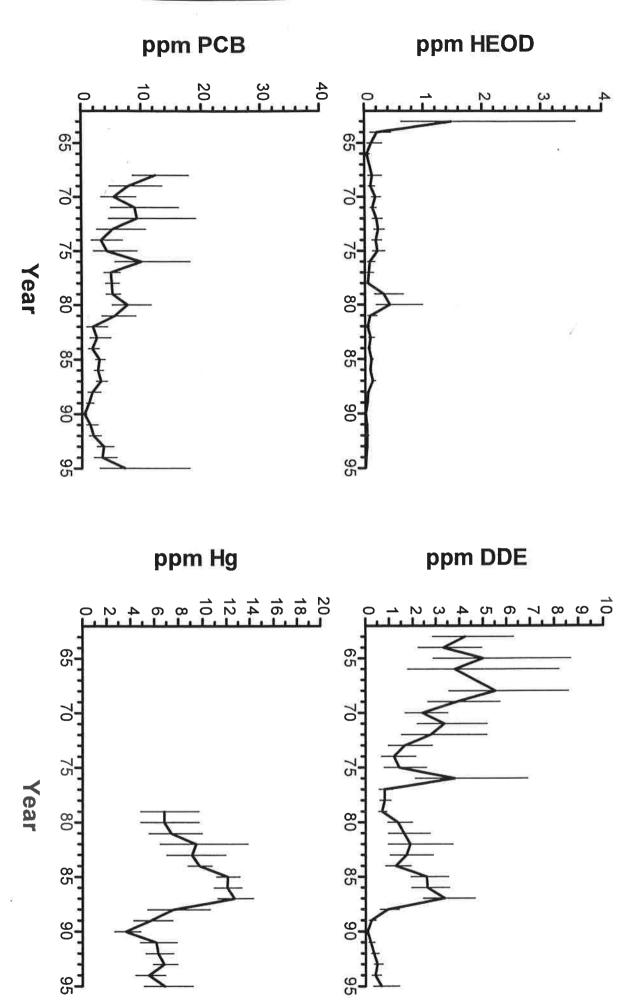


Figure 5. Note that no birds were received in 1967. Trends in pollutant residues in livers of Great-crested Grebes, 1963-1994. Three year moving geometric means with one geometric standard error on either side.

INSTITUTE OF TERRESTRIAL ECOLOGY (NATURAL ENVIRONMENT RESEARCH COUNCIL)

JNCC/NERC CONTRACT HF3/08/01 JNCC PROJECT 018 (Contract F71-12-153) ITE PROJECT T08054c5

Annual report to the Joint Nature Conservation Committee

WILDLIFE AND POLLUTION

Part 3 Organochlorines and mercury in peregrine eggs, 1994

I Newton, L Dale, P Freestone, M C French, J Wright, C Wyatt & I Wyllie

Monks Wood Abbots Ripton Huntingdon Cambs PE17 2LS

3 ORGANOCHLORINES AND MERCURY IN PEREGRINE EGGS, 1994

3.1 Introduction

The findings from all peregrine eggs analysed between 1961 and 1986 were summarised in Newton *et al.* (1989); those from eggs analysed during 1987-93 are given in previous reports in this series, and those from 30 eggs (one per clutch) analysed in 1994 are given in Table 5. Unfortunately no coastal eggs were represented.

3.2 Results

The findings confirm continuing widespread contamination of British peregrine eggs with organochlorines and mercury. However, most of the residues were present at relatively low level. The highest DDE and HEOD levels recorded in 1994 were 2.0 and 0.3 ppm wet weight (both in an egg from Powys), the highest PCB level was 19 ppm (in an egg from Strathclyde) and the highest mercury level was 3 ppm in dry weight (also Strathclyde).

There seems little doubt that organochlorine levels in British peregrines are continuing to decline. Over most of the country, the population recovered some years ago from its pesticide-induced decline

3.3 Reference

Newton, I., Bogan, J.A. & Haas, M.B. 1989. Organochlorines and mercury in British Peregrine eggs. Ibis 131: 355-376.

Table 5. Residue levels (organochlorine ppm wet weight (lipid weight); mercury ppm dry weight) and shell indices (SI) for Peregrine eggs received in 1994.

ND=none detected; D & G=Dumfries & Galloway.

Number	Year	County	SI	pp'-DDE	HEOD	PCB	Hg				
7			A								
SOUTHERN SCOTLAND											
E6148	94	Lothian	1.88	0.35 (7.01)	0.03 (0.60)	2.51 (49.58)	ND				
E6159	94	Borders	2 00	1.11 (20.76)	0.13 (2.45)	4.59 (85.87)	1.39				
E6160	92	Borders	40	0.42 (19.05)	0.07 (3.07)	1.33 (59.90)	ND				
E6163	94	Borders	=	0.13 (3.84)	0.04 (1.09)	1.29 (38.27)	0.35				
E6164	94	Borders	1.97	0.20 (4.06)	0.05 (1.02)	1.64 (33.53)	0.37				
E6169	94	Borders	1.75	0.15 (2.49)	0.05 (0.88)	2.05 (34.27)	0.22				
E6170	94	Borders	1.85	0.11 (2.16)	0.02 (0.37)	1.08 (20.61)	ND				
E6210	94	Borders	1.95	0.32 (5.81)	0.03 (0.54)	1.03 (18.71)	1.46				
E6271	94	D & G	1.95	0.41 (9.00)	0.03 (0.67)	0.97 (21.10)	0.72				
E6275	94	D & G	₹3	0.20 (6.89)	0.02 (0.81)	0.93 (31.89)	0.58				
E6328	94	Strathclyde	1.82	1.17 (21.33)	0.20 (3.68)	18.51 (336.39)	0.77				
E6329	94	Strathclyde	1.72	1.68 (63.36)	0.17 (6.38)	13.37 (505.34)	3.23				
E6372	94	Borders	1.74	0.38 (8.93)	0.02(0.41)	1.11 (26.17)	0.18				
E6373	94	Borders	2.00	0.37 (6.17)	0.02 (0.38)	1.02 (16.97)	0.20				
E6374	94	Borders	(4)	0.64 (8.36)	0.03 (0.41)	1.61 (21.01)	0.14				
E6375	94	Borders	**	0.85 (9.28)	0.04 (0.38)	1.76 (19.23)	0.10				
CENTRA	AL AN	D EASTERN H	IGHLA	NDS							
E6166	90	Tayside	1.91	0.05 (0.84)	0.02 (0.33)	0.88 (16.58)	ND				
E6167	90	Tayside	-	0.09 (1.85)	0.02 (0.35)	1.24 (25.49)	ND				
E6168	91	Tayside	1.87	0.05 (0.67)	0.02 (0.28)	0.91 (13.41)	ND				
E6240	94	Grampian	-	0.08 (1.34)	0.02 (0.34)	0.22 (3.64)	0.17				
E6241	94	Grampian	1.74	0.60 (10.49)	0.02 (0.34)	0.49 (8.53)	ND				
E6411	94	Tayside	1.96	0.05 (0.85)	0.01 (0.10)	0.44 (8.32)	0.15				
E6412	94	Tayside	1.82	0.86 (13.75)	0.03 (0.41)	1.30 (20.70)	0.48				
E6414	94	Tayside	1.54	0.02 (0.40)	0.01 (0.10)	0.16 (3.20)	0.14				
E6416	94	Tayside	1.90	0.46 (7.49)	0.02 (0.33)	1.43 (23.27)	0.37				
NORTH	ERN E	NGLAND									
E6360	94	N'humberland	1.99	0.57 (11.51)	0.04 (0.86)	2.09 (42.22)	0.72				
E6361	94	N'humberland	1.90	0.33 (4.52)	0.03 (0.45)	0.69 (7.29)	0.43				
WALES											
E6425	94	Gwent	1.96	0.65 (11.31)	0.04 (0.78)	7.72 (135.24)	0.14				
E6427	94	Powys	1.86	0.30 (4.74)	0.03 (0.51)	1.73 (27.05)	0.32				
E6428	94	Powys	1.76	2.04 (42.29)	0.25 (5.15)	1.75 (36.40)	0.77				
20120	7 -₹	- 0 3 0	21.0	,	(5.15)		٠.				

4 ORGANOCHLORINES AND MERCURY IN MERLIN EGGS, 1994

4.1 Introduction

The findings from most previous analyses of merlin eggs were given in Newton & Haas (1988), those from 1987-1993 in previous reports in this series, while those from 1994 (one egg per clutch) are summarised in Table 6.

4.2 Results

The results from these additional 55 merlin eggs serve to confirm the continuing widespread contamination of British merlins with organochlorines and mercury. Levels of all contaminants were generally higher than those in peregrine eggs, but levels of all chemicals continue to decline slowly. The highest DDE and HEOD levels recorded in 1994 were 12 and 2 ppm (both in an egg from Tayside), the highest PCB level was 13 ppm (two eggs from Yorkshire) and, as in previous years, Hg was present at highest level (3-7 ppm) in eggs from the Northern Isles. An egg from Grampian also contained 6 ppm Hg.

Together with previous findings, these data indicate a continuing downward trend in organochlorine residues in merlins, but occasional high levels still occur, and mercury remains at high level in eggs from the Northern Isles. Decline in residues over the past 10-15 years has coincided with a substantial recovery in merlin numbers over much of the country.

4.3 Reference

Newton, I. & Haas, M.B. 1988. Pollutants in Merlin eggs and their effects on breeding. Brit. Birds 81: 258-269.

Table 6. Residue levels (organochlorine ppm wet weight (lipid weight); mercury ppm dry weight) and shell indices (SI) for Merlin eggs received in 1994.

ND=none detected; D & G=Dumfries & Galloway.

Number	Year	County	SI	pp'-DDE	HEOD	PCB	Hg		
SOUTHERN SCOTLAND									
E6036	93	Lothian	1.07	6.14 (121.35)	0.53 (10.61)	2.47 (48.85)	3.32		
E6037	92	Lothian	0.76	6.25 (84.42)	0.12 (1.71)	3.26 (46.66)	1.35		
E6039	92	Lothian	1.17	4.15 (42.37)	0.13 (1.32)	3.37 (34.41)	1.94		
E6040	92	Lothian	1.16	6.85 (122.22)	0.07 (1.21)	3.93 (70.07)	2.73		
E6042	92	Lothian	1.20	1.64 (36.93)	0.07 (1.52)	1.52 (31.99)	2.47		
E6074	93	D & G	0.92	5.41 (50.74	0.12 (1.14)	3.68 (35.15)	3.60		
E6075	93	Strathclyde	1.18	2.61 (26.53)	0.04 (0.37)	0.83 (8.42)	3.48		
E6149	94	Lothian	1.30	1.95 (30.90)	0.12 (1.97)	4.14 (65.68)	3.84		
E6205	94	Borders	1.26	1.72 (37.99)	0.09 (2.07)	2.60 (57.38)	2.64		
E6209	94	Borders	1.19	2.52 (32.28)	0.15 (1.97)	3.35 (42.88)	1.96		
E6446	94	Strathclyde	1.23	1.99 (34.59)	0.05 (0.938)	3.13 (54.29)	3.52		
CENTRA	AL AN	D EASTERN I	HIGHLAN	DS					
E6031	93	Tayside	1.08	ND	ND	ND	1.66		
E6032	93	Tayside	1.25	2.58 (39.54)	0.16 (2.47)	1.96 (30.04)	1.30		
E6033	93	Tayside	1.13	12.42 (100.42)	1.87 (15.11)	6.67 (53.95)	2.61		
E6043	93	Grampian	1.15	4.08 (79.40)	0.14 (2.79)	4.63 (90.10)	3.06		
E6044	93	Grampian	1.24	2.40 (32.31)	0.07 (0.92)	2.52 (33.94)	1.79		
E6046	93	Grampian	-	3.17 (56.95)	0.07 (1.26)	2.80 (50.28)	5.95		
E6048	93	Grampian	1.03	6.66 (99.02)	0.21 (3.15)	2.28 (33.82)	2.05		
E6049	92	Tayside	1.04	3.67 (97.40)	0.32 (8.53)	2.96 (78.49)	4.15		
E6050	92	Tayside	1.29	2.58 (33.40)	0.09 (1.14)	2.97 (38.46)	1.90		
E6051	92	Tayside	1.24	3.26 (47.02)	0.09 (1.28)	3.68 (53.15)	1.57		
E6055	93	Highland	1.24	1.40 (20.39)	0.08 (1.11)	2.01 (29.31)	6.21		
E6070	93	Tayside	1.13	6.82 (95.09)	1.67 (23.33)	5.30 (73.90)	2.42		
E6072	93	Tayside	1.19	3.72 (56.90)	0.06 (0.90)	4.30 (65.71)	1.63		
E6073	93	Tayside	1.05	6.69 (100.16)	1.57 (23.56)	4.99 (74.68)	2.56		
E6158	91	Tayside	1.30	2.87 (39.66)	0.42 (5.79)	5.34 (73.83)	1.76		
E6450	92	Tayside	1.24	1.68 (26.91)	0.07 (1.16)	2.22 (35.64)	1.50		
E6451	94	Grampian	1.23	2.74 (49.91)	0.08 (1.44)	4.02 (73.26)	2.46		
E6452	94	Tayside	1.19	5.09 (86.26)	0.12 (2.10)	1.93 (32.65)	1.65		
E6453	94	Grampian	1.17	1.93 (33.94)	0.03 (0.50)	2.14 (37.66)	1.86		
E6454	94	Grampian	=	1.96 (35.30)	0.06 (1.10)	2.34 (41.83)	2.42		
E6455	94	Grampian	1.14	2.29 (50.68)	0.04 (0.90)	1.80 (39.83)	2.01		

94 94 94 94	Grampian	HLAND	S cont.	g.*	=			
94 94	Grampian		S cont.	g ^a	: E			
94	•	1 27						
94	•	177	1 11 (01 10)	0.00.40.64	5.7			
			1.44 (34.16)	0.03 (0.61)	1.93 (45.84)	1.62		
94	Grampian	1.27	2.08 (52.14)	0.17 (4.29)	3.02 (75.68)	1.61		
0.4	Grampian	1.20	2.81 (79.35)	0.17 (4.89)	3.48 (98.29)	2.21		
94	Tayside	1.15	1.60 (33.15)	0.05 (1.06)	1.69 (34.97)	1.96		
94	Tayside	1.24	1.66 (40.43)	0.04 (0.86)	1.97 (47.98)	1.67		
NORTHERN ENGLAND								
94	N Yorkshire	1.21	1.57 (24.64)	0 10 (1 60)	12 72 (199 87)	2.00		
-			•	. ,	` ,	1.03		
-			, ,	, ,	,	2.34		
			•	, ,	• •	2.37		
			` '	, ,	,	4.30		
			, ,	, ,	,	1.76		
			, ,	` '		1.80		
			, ,	, ,	•	2.09		
94			` ,	` ,	` ,	6.65		
94	S Yorkshire	•	0.73 (17.00)	0.17 (3.84)	1.19 (27.50)	0.95		
RN IS	LES							
94	Shetland	1.23	1 86 (26 95)	0.05 (0.74)	3 11 (45 03)	6.90		
			, ,	, ,	· ·	4.61		
			` ,	` ,	` ,	3.46		
			` ,	` ,	` ,	8.61		
-			,	, ,	` ,	5.36		
			•	` ,	` ,	3.01		
	94 94 94 94 94 94 94 94 94 94	94 Tayside 2N ENGLAND 94 N Yorkshire 94 N Yorkshire 94 N Yorkshire 94 N Yorkshire 94 Northumberland 94 Durham 94 Durham 94 Durham 94 Durham 94 Syorkshire 2N ISLES 94 Shetland 94 Shetland 94 Shetland 94 Shetland 94 Shetland 94 Shetland	94 Tayside 1.24 2N ENGLAND 94 N Yorkshire 1.08 94 N Yorkshire 1.08 94 N Yorkshire 1.09 94 Northumberland 1.13 94 Durham 1.29 94 Durham 1.22 94 Durham 1.08 94 Syorkshire - 2N ISLES 94 Shetland 1.19 94 Shetland 1.22 94 Shetland 1.22 94 Shetland 1.22 94 Shetland 1.23 94 Shetland 1.19 94 Shetland 1.22 94 Shetland 1.22	94 Tayside 1.24 1.66 (40.43) PAN ENGLAND 94 N Yorkshire 1.08 2.07 (34.56) 94 N Yorkshire 1.18 1.87 (24.86) 94 N Yorkshire 1.09 2.73 (37.22) 94 Northumberland 1.13 1.70 (26.43) 94 Durham 1.29 1.38 (13.08) 94 Durham 1.15 2.57 (38.63) 94 Durham 1.22 2.37 (38.10) 94 Durham 1.08 2.45 (41.64) 94 S Yorkshire - 0.73 (17.00) PAN ISLES 94 Shetland 1.19 1.12 (16.65) 94 Shetland 1.11 0.90 (14.65) 94 Shetland 1.22 1.49 (30.16) 94 Shetland 1.08 2.08 (36.70)	94 Tayside 1.24 1.66 (40.43) 0.04 (0.86) 2N ENGLAND 94 N Yorkshire 1.08 2.07 (34.56) 0.21 (3.50) 94 N Yorkshire 1.18 1.87 (24.86) 0.10 (1.26) 94 N Yorkshire 1.09 2.73 (37.22) 0.62 (8.51) 94 Northumberland 1.13 1.70 (26.43) 0.07 (1.04) 94 Durham 1.29 1.38 (13.08) 0.06 (0.57) 94 Durham 1.15 2.57 (38.63) 0.26 (3.83) 94 Durham 1.22 2.37 (38.10) 0.06 (1.00) 94 Durham 1.08 2.45 (41.64) 0.32 (5.48) 94 S Yorkshire - 0.73 (17.00) 0.17 (3.84) 2N ISLES 94 Shetland 1.19 1.12 (16.65) 0.04 (0.65) 94 Shetland 1.11 0.90 (14.65) 0.11 (2.11) 94 Shetland 1.22 1.49 (30.16) 0.05 (0.91) 94 Shetland 1.08 2.08 (36.70) 0.11 (2.02)	94 Tayside 1.24 1.66 (40.43) 0.04 (0.86) 1.97 (47.98) PARENGLAND 94 N Yorkshire 1.08 2.07 (34.56) 0.21 (3.50) 6.54 (109.06) 94 N Yorkshire 1.18 1.87 (24.86) 0.10 (1.26) 2.41 (31.99) 94 N Yorkshire 1.09 2.73 (37.22) 0.62 (8.51) 13.41 (182.77) 94 Northumberland 1.13 1.70 (26.43) 0.07 (1.04) 2.13 (33.12) 94 Durham 1.29 1.38 (13.08) 0.06 (0.57) 2.77 (26.310) 94 Durham 1.15 2.57 (38.63) 0.26 (3.83) 4.28 (64.25) 94 Durham 1.22 2.37 (38.10) 0.06 (1.00) 3.31 (53.25) 94 Durham 1.08 2.45 (41.64) 0.32 (5.48) 31.17 (529.18) 94 S Yorkshire - 0.73 (17.00) 0.17 (3.84) 1.19 (27.50) PARENGLAND 1.24 1.66 (40.43) 0.04 (0.65) 2.98 (44.39) 94 Shetland 1.19 1.12 (16.65) 0.04 (0.65) 2.98 (44.39) 94 Shetland 1.11 0.90 (14.65) 0.11 (2.11) 3.10 (50.45) 94 Shetland 1.22 1.49 (30.16) 0.05 (0.91) 3.44 (69.60) 94 Shetland 1.08 2.08 (36.70) 0.11 (2.02) 6.08 (107.48)		

INSTITUTE OF TERRESTRIAL ECOLOGY (NATURAL ENVIRONMENT RESEARCH COUNCIL)

JNCC/NERC CONTRACT HF3/08/01 JNCC PROJECT 018 (Contract F71-12-153) ITE PROJECT T08054c5

Annual report to the Joint Nature Conservation Committee

WILDLIFE AND POLLUTION

Part 5 Organochlorines and mercury in golden eagle eggs, 1994

I Newton, L Dale, P Freestone, M C French, J Wright, C Wyatt & I Wyllie

Monks Wood Abbots Ripton Huntingdon Cambs PE17 2LS

5 ORGANOCHLORINES AND MERCURY IN GOLDEN EAGLE EGGS, 1994

5.1 Introduction

The findings from analyses of golden eagle eggs obtained during 1963-86 were given in Newton & Galbraith (1991), and from 1987-93 in previous reports in this series. Eggs from seven clutches were received in 1994, and the results are given in Table 7. Unfortunately, no coastal eggs were received.

5.2 Results

The new analyses serve to confirm the low levels of contamination found in recent years in golden eagle eggs (Table 7). All residue levels were low, and well within the range of previous values.

5.3 Reference

Newton, I. & Galbraith, A.E. 1991. Organochlorines and mercury in the eggs of Golden Eagles *Aquila chrysaetos* from Scotland. Ibis 133: 115-120.

Table 7. Residue levels (organochlorine ppm wet weight (lipid weight); mercury ppm dry weight) and shell indices (SI) for Golden Eagle eggs received in 1994.

ND=none detected; D & G=Dumfries & Galloway.

Number	Year	County	SI	pp'-DDE		HEOD		PCB		Hg
SOUTHERN SCOTLAND										
E6293	94	D & G	2.90	0.04	(0.69)	0.03	(0.63)	0.52	(10.16)	0.21
E6311	94	Strathclyde	2.82	0.01	(0.65)	0.01	(0.64)	0.27	(12.29)	ND
E6313	94	Strathclyde	2.57	0.07	(1.54)	0.03	(0.58)	3.06	(66.91)	0.19
E6315	94	Strathclyde	3.06	0.01	(0.37)	0.01	(0.28)	0.35	(9.39)	0.12
E6317	94	Strathclyde	2.98	0.05	(0.88)	0.02	(0.37)	0.67	(13.02)	0.10
E6464	94	Strathclyde	2.72	0.01	(0.95)	0.01	(0.23)	0.21	(9.61)	ND
NORTHERN ENGLAND										
E6146	94	Cumbria	3.16	0.03	(0.36)	0.01	(0.16)	0.29	(5.74)	0.15

JNCC/NERC CONTRACT HF3/08/01 JNCC PROJECT 018 (Contract F71-12-153) ITE PROJECT TO8054c5

Annual report to the Joint Nature Conservation Committee

WILDLIFE AND POLLUTION

Part 6 Organochlorines and mercury in sea eagle eggs, 1994

I Newton, L Dale, P Freestone, M C French, J Wright, C Wyatt & I Wyllie

6 ORGANOCHLORINE AND MERCURY IN SEA EAGLE EGGS

6.1 Introduction

So far, the Sea Eagles *Haliaetus albicilla* introduced to western Scotland in the period 1976-85 have breed with poor success. Most breeding attempts have failed completely. One of the possible problems might be contamination with organochlorine and mercury residues, which the birds could acquire particularly from the marine component of their diet, various fish and seabirds. Some of the nests have been on inaccessible sea-cliffs, and in 1994 only one unhatched egg was obtained for analysis, from an inland site occupied by a lone female.

6.2 Results

11

TI)

13)

111)

This egg had a shell index of 3.50 (within the range of pre-DDT values), and was found to contain 0.79 ppm DDE, 0.02 ppm HEOD and 10.90 ppm PCBs in wet weight, and 0.34 ppm Hg in dry weight. Apart from PCBs, these values are low; none of the residues give cause for concern. They reflect the fact that this bird would have fed mainly on land-based prey.

JNCC/NERC CONTRACT HF3/08/01 JNCC PROJECT 018 (Contract F71-12-153) ITE PROJECT TO8054c5

Annual report to the Joint Nature Conservation Committee

WILDLIFE AND POLLUTION

Part 7 Organochlorines and mercury in gannet eggs, 1994

I Newton, L Dale, P Freestone, M C French, J Wright, C Wyatt & I Wyllie

7 ORGANOCHLORINES AND MERCURY IN GANNET EGGS, 1994

7.1 Introduction

The findings from all gannet eggs examined to 1987 were summarised in the report for 1989, and in published form in Newton et al. (1990). Subsequent results were given in previous reports in this series, and those for 38 eggs examined in 1994 are given in Table 8. They include 9-10 eggs from each of the four colonies at Hermaness, Ailsa Craig, Bass Rock and St Kilda. For eggs from each colony, mean residues are compared with previous eggs from that colony, both in the short term (comparing with Hermaness, Ailsa Craig and Bass Rock in 1992 and with St Kilda in 1990 (Table 8), and in the long-term (1971-94 and 1984-94) in Table 9.

7.2 Results

10)

H

(1)

10

Low levels of DDE, HEOD, PCBs and Hg were found in all the eggs from all four colonies. Compared with the previous annual samples from the same colonies at Hermaness, Ailsa Craig and Bass Rock, HEOD had declined significantly, while at Ailsa Craig mean shell-index (which responds to DDE), had improved significantly. No other significant short-term changes were found.

Over the longer term (1971-94), eggs from Ailsa Craig showed a significant decline in residues of all four chemicals, those from Bass Rock showed significant declines in HEOD and DDE, while those from Hermaness showed a significant decline in DDE (Table 9). Eggs from St Kilda showed no significant trends in residues. Colonies showing significant declines in residues were those where residue levels were highest in the earlier years of monitoring (Newton *et al.* 1990).

Over the more recent period (1984-94), the only significant change detected was a decline in DDE at Bass Rock. At all colonies, however, all residues were low and unlikely to have adverse effects on gannet reproduction or survival.

The importance of continued monitoring of gannet eggs is that this is the only seabird of British coasts in which residue levels have been measured continuously over the past 25 years. It therefore provides a useful baseline, as well as revealing long-term trends.

7.3 Reference

Newton, I., Haas, M.B. & Freestone, P. 1990. Trends in organochlorine and mercury levels in Gannet eggs. Environ. Pollut. 63: 1-12.

Table 8. Residue levels (organochlorine ppm wet weight; mercury ppm dry weight) and shell indices (SI) for gannet eggs (Sula bassana) received in 1994.

Colony	SI	pp'-DDE	HEOD	PCB	Hg
Hermaness	2.97	0.132	0.025	2.145	2.222
	2.96	0.043	0.021	1.265	3.410
	3.12	0.106	0.022	2.055	2.027
	3.07	0.031	0.016	1.129	2.152
	3.18	0.039	0.016	0.814	2.477
	3.11	0.048	0.012	0.773	1.916
4	3.08	0.061	0.020	1.614	2.253
	2.98	0.131	0.026	1.670	2.407
	3.00	0.066	0.018	1.595	2.613
	3.17	0.113	0.025	2.222	2.425
Mean	3.06	0.07	0.02	1.44	1.53
SD	0.08	0.11	0.23	0.17	0.62
Range within 1 SE	2.74-2.79	-0.01-0.14	0.02-0.02	1.27-1.62	0.97-2.41
Ailsa Craig	2.95	0.090	0.043	3.388	1.766
_	3.08	0.022	0.023	0.755	1.071
	2.96	0.121	0.056	4.952	2.357
	2.89	0.073	0.043	2.818	3.363
	2.92	0.072	0.036	2.529	2.210
	3.02	0.077	0.077	3.753	1.688
	3.15	0.076	0.047	3.867	2.482
	3.24	0.085	0.056	6.732	4.241
	3.29	0.063	0.069	3.826	2.333
Mean	3.06	0.07	0.05	3.08	2.23
SD	0.14	0.20	0.16	0.27	0.17
Range within 1 SE	3.01-3.10	0.001-0.14	0.04-0.05	2.51-3.77	1.95-2.55
Bass Rock	2.98	0.064	0.042	1.900	1.500
	3.08	0.049	0.037	1.063	1.518
	₹/)	0.209	0.076	2.977	2.115
	2.90	0.197	0.077	4.485	3.129
	3.10	0.065	0.043	1.972	1.576
	2.90	0.092	0.063	3.149	2.560
19	2.78	0.165	0.048	2.981	1.642
	3.01	0.073	0.039	1.542	1.759
	2.80	0.199	0.043	2.479	2.353
	3.04	0.061	0.052	2.155	3.313
Mean	2.28	0.10	0.05	2.30	2.06
SD	0.12	0.25	0.12	0.18	0.13
Range within 1 SE	2.24-2.32	0.02-0.18	0.05-0.06	2.01-2.62	1.87-2.26

Colony	SI	DDE	HEOD	PCB	Hg
St Kilda	3.01	0.669	0.058	8.392	3.065
	3.26	0.043	0.038	1.305	2.788
	3.12	0.024	0.029	0.916	2.147
	3.04	0.065	0.047	1.984	2.326
41	3.17	0.037	0.030	1.163	2.110
4	3.00	0.022	0.023	0.843	1.824
9	3.15	0.150	0.070	3.806	3.032
	2.87	0.396	0.064	6.114	3.178
	2.81	0.022	0.021	0.883	1.761
Mean	3.05	0.07	0.04	1.95	2.41
SD	0.14	0.56	0.14	0.38	0.10
Range within 1 SE	3.00-3.10	-0.11-0.26	0.03-0.04	1.45-2.61	2.24-2.6

NB: Means are arithmetic for shell index; geometric for residues

Comparison of shell index and geometric mean residue levels from gannet eggs collected from Hermaness, Ailsa Craig and Bass Rock in 1992 and 1994; and from St Kilda in 1990 and 1994.

t values shown. Minus values indicate a decrease and plus values an increase from previous eggs from the same site.

* P<0.05 ** P<0.01 ***P<0.001

	Hermaness	Ailsa Craig	Bass Rock	St Kilda
Shell index	$t_{18} = -1.22$	$t_{17} = +3.30**$	$t_{17} = -2.08$	$t_{17} = +1.01$
pp'-DDE	$t_{18} = -1.62$	$t_{17} = -1.39$	$t_{18} = +0.46$	$t_{17} = +1.57$
HEOD	$t_{18} = -11.77***$	$t_{17} = -2.71*$	$t_{18} = -5.11***$	$t_{17} = +1.58$
PCB	$t_{18} = -0.79$	$t_{17} = +0.13$	$t_{18} = +0.08$	$t_{17} = +2.37$
Hg	$t_{18} = -1.47$	$t_{17} = +0.50$	$t_{18} = +2.05$	$t_{17} = -1.84$

Table 9. Long term trends in pollutants in Gannet eggs based on regression analyses of annual geometric mean values on year.

=0

0

-0

1

)

Figures show linear regression coefficients (b) based on log values regressed against year. *P = <0.05; **P = <0.01; ***P = >0.001; ns = not significant.

	1971 - 1994	1984 - 1994
Ailsa Craig		¥
HEOD	-0.0269 ***	0.0224
pp'-DDE	-0.0895 ***	-0.0234 ns
PCB	-0.2768 *	-0.0324 ns 0.0903 ns
Hg	-0.0967 ***	-0.0379 ns
75		0.0017 Hs
Bass Rock		
HEOD	-0.0175 *	-0.0137 ns
pp'-DDE	-0.0514 ***	-0.0317 *
PCB	-0.1583 ns	-0.1204 ns
Hg	0.0138 ns	0.0039 ns
Hermaness		
HEOD	-0.0048 ns	-0.0257 ns
pp'-DDE	-0.0239 *	-0.0257 ns -0.0186 ns
PCB	0.0556 ns	-0.0186 ns 0.2493 ns
Hg	0.0414 ns	-0.5829 ns
St Kilda		
19	• • • • • •	
HEOD	-0.0059 ns	-0.0546 ns
pp'-DDE	-0.0163 ns	-0.0305 ns
PCB	0.0119 ns	-0.2053 ns
Hg	0.1265 ns	0.0276 ns

JNCC/NERC CONTRACT HF3/08/01 JNCC PROJECT 018 (Contract F71-12-153) ITE PROJECT TO8054c5

Annual report to the Joint Nature Conservation Committee

WILDLIFE AND POLLUTION

Part 8 Rodenticides in barn owls

I Newton, L Dale, P Freestone, C Wyatt & I Wyllie

8 RODENTICIDE RESIDUES IN BARN OWLS

8.1 Introduction

The aims of this study were to find (1) to what extent barn owls *Tyto alba* in Britain are contaminated with certain rodenticide residues, and (2) whether such residues are likely to represent a significant source of mortality. As barn owl numbers are thought to have declined in Britain during the present century (Bunn *et al.* 1982, Shawyer 1987, Percival 1991), it is important to assess any role that secondary poisoning from rodenticides might have.

It is the so-called 'second-generation' anticoagulant rodenticides which are likely to pose the greatest threat, as these are rapidly replacing warfarin and other 'first generation' rodenticides, to which rats and mice in many areas have become resistant. Four second generation rodenticides are currently in use in Britain. Difenacoum was introduced in 1975, bromadiolone in 1980, brodifacoum in 1982 and flocoumafen in 1986. All these chemicals are more toxic than warfarin, and also more persistent, giving the possibility of secondary poisoning in rodent predators and scavengers. As the barn owl often nests and hunts around farm buildings where these chemicals are commonly used, it would seem to be at particular risk.

We began analysing barn owls for rodenticide residues in 1983, and the findings from 145 carcasses examined up to March 1989 were summarised in Newton *et al.* (1990), and from subsequent carcasses in previous reports in this series.

In 1994 a further 95 carcasses were analysed, giving a total of 496 for the whole 12-year period 1983-94, and 351 for 1990-94, the results from which are brought together here. Carcasses came from various parts of the country, and from all months of the year.

8.2 Results

Of the 95 birds examined in 1994, residues of one or more rodenticides were detected in 28 (Table 10). Difenacoum was found in 18 birds, bromadiolone in 14 birds and brodifacoum in one. None contained residues of the most recently introduced compound, flocoumafen. Of the 28 contaminated birds, eight contained residues high enough to have killed them (two with difenacoum at 0.16 (Kent), 0.21 (Norfolk), and six with bromadiolone at 0.37 (Norfolk), 0.61 (Oxon), 0.55 (Essex), 0.12 (Wilts), 0.63 (Isle of Man) and 0.37 (Oxon). However, not all the owls with residues in the lethal range necessarily died of rodenticide poisoning (see below).

In terms of the proportion of birds in which residues were detected, the findings from 1994 were similar to those in 1990-93. In this period, 32% of the 351 owls examined contained detectable residues of one or more chemicals (Table 11). An increase in the proportion of contaminated birds through the 1980s would have been expected, as the sales of these various chemicals increased. Although our findings do suggest an upward trend over this period, interpretation is complicated by a change to more sensitive analytical equipment in 1990 (see report for 1991 (dated 1992). This means that extremely low residue levels may have been missed before 1990, compared with 1990-94. None-the-less, the fact that rodenticides were detected in about one third of all barn owls received in 1990-94 indicates how widespread

the exposure to these chemicals now is.

Over the 1990-94 period, difenacoum was found in 70 (20%) birds, bromadiolone in 48 (14%), brodifacoum in 13 (4%) and flocoumafen in 6 (2%). Interestingly, these figures closely matched the usage frequency of the four chemicals on British farms (Table 11), as revealed by a survey in 1988-89 by the Ministry of Agriculture, Fisheries and Food (Olney et al. 1991a, 1991b). This survey was based on questionnaires sent to a large sample of farms throughout England and Wales, asking for details of the types of rodenticides used. It seems, therefore, that barn owls accumulated a more or less representative cross-section of the second generation rodenticides in use.

Difenacoum was found in liver at concentrations of 0.002-0.135 μg g⁻¹ (mean 0.029 μg g⁻¹), bromadiolone at 0.004-0.319 μg g⁻¹ (mean 0.099 μg g⁻¹), brodifacoum at 0.002-0.515 μg g⁻¹ (mean 0.109 μg g⁻¹), and flocoumafen at 0.003-0.144 μg g⁻¹ (mean 0.045 μg g⁻¹). The frequency distributions of different residue levels among contaminated owls are summarised in Table 12. The majority of birds in which residues were detected contained less than 0.1 mg kg⁻¹. Because of the likely chemical persistence in the liver of contaminated birds, these owls could have been exposed for up to several months previously or on more than one occasion.

Of the five birds diagnosed on autopsy as likely rodenticide victims, analytical results were not always conclusive. One bird contained 0.437 mg kg⁻¹ brodifacoum in its liver (within the lethal range); another contained 0.002 mg kg⁻¹ flocoumafen; a third contained 0.068 mg kg⁻¹ difenacoum and 1.720 mg kg⁻¹ bromadiolone; while two others contained 1.066 and 0.332 mg kg⁻¹ bromadiolone. All these birds had extensive internal haemorrhaging of heart, lungs, liver, brain and subcutaneous areas which were not associated with any impact and no other cause of death was apparent. Other birds had residues exceeding 0.2 mg kg⁻¹, but were known to have died of other causes, namely accidents of some form (9 birds) or starvation (8 birds).

8.3 Discussion

S ()

Sic ()

11)

(CI)

About 111 (32%) of the 351 barn owls examined in 1990-94 had residues of one or more rodenticide in their bodies, but this sample may not reflect the true exposure of owls to rodenticides in the regions concerned. Almost certainly the owls in our sample did not form a representative cross-section of barn owl deaths. They were probably biased towards those forms of mortality most associated with people, accounting for the high proportion of accident victims. On the other hand, the sample may have under-estimated the proportion of deaths due to rodenticides because, some hours before death, affected animals become lethargic. Any affected owls are therefore likely to die on their roost sites, in tree holes or roof cavities, where they are less likely to be found by the casual observer than are birds that die in the open. This statement is entirely conjectural, however, and as yet there is no evidence one way or the other.

Despite any possible bias in the sampling procedure, it is clear that contamination of barn owls with second generation rodenticides is now widespread. Contaminated specimens came from all major regions of Britain, and were not restricted to the warfarin-resistance areas, as depicted by Shawyer (1987). Nevertheless, the residues in most specimens were well below lethal levels, and less than 2% of all owls examined appeared from their symptoms to have

died directly from rodenticide poisoning. As some owls which died of other causes had rodenticide levels within the known lethal range (above 0.2 µg g⁻¹), rodenticide may have predisposed their deaths or reduced the chance of recovery from accidents. Alternatively if they had not died of some other cause, they may have later succumbed to rodenticide. Either way, the likely maximum proportion of deaths to rodenticide is still small (at most 2% of all specimens). As yet, therefore, we have no evidence that second-generation rodenticides contribute appreciably to the overall mortality in British barn owls, and hence no evidence that they are affecting population levels.

8.4 References

610

9 (

91 13

5 1

SL ()

SE ()

10

(0.0)

10

1 (

1.13

11)

11

4 1)

Bunn, D.S., Warburton, A.B. & Wilson, R.D.S. 1982. The Barn Owl. Calton: Poyser.

Newton, I., Wyllie, I. & Freestone, P. 1990. Rodenticides in British Barn Owls. Environ. Pollut., 68: 101-117.

Olney, N.J., Davis, R.P., Thomas, M.R. & Garthwaite, D.G. 1991a. Rodenticide usage on farms in England growing arable crops 1988. Pesticide Usage Survey Report 89. Harpenden: Ministry of Agriculture, Fisheries & Food.

Olney, N.J., Davis, R.P., Thomas, M.R. & Garthwaite, D.G. 1991b. Rodenticide usage on farms in England and Wales growing grassland and fodder crops 1989. Pesticide Usage Survey Report 90. Harpenden: Ministry of Agriculture, Fisheries & Food.

Percival, S. 1991. Population trends in British Barn Owls. British Wildlife 1991: 131-140.

Shawyer, C.R. 1987. The Barn Owl in the British Isles. Its past, present and future. London: The Hawk Trust.

Table 10. Levels of rodenticides (ppm in wet weight) in the livers of Barn Owls (Tyto alba) received in 1994.

ND=none detected; J=juvenile in first year; A=adult other than first year; M=male; F=female; brod=brodifacoum; difen=difenacoum; brom=bromadialone; floc=flocoumafen; D & G=Dumfries & Galloway; H & W=Hereford & Worcester.

Cnoolin	H & W	=Hereford & Wo	rcester.				······································	
Specir No	I loto	County	Age	Sex	brod	difen	brom	floc
11373	Aug 92	Strathclyde	J	14				
11374	Oct 92	Strathclyde	A	M	ND	ND	ND	ND
11403	Dec 92	Powys	J	F	ND	ND	ND	ND
11460	Apr 93	Norfolk	J	F	ND	ND	ND	ND
11332	Jul 93	Highland	J	M	ND	ND	ND	ND
11336	Aug 93	Lines	J	M	ND	ND	ND	ND
11459	Aug 93	Norfolk	J	M	ND	ND	ND	ND
11333	Sep 93	Highland	J	M F	ND	ND	0.373	ND
11461	Sep 93	Norfolk	J	r F	ND	ND	ND	ND
11326	Oct 93	Cheshire	-		ND	ND	ND	ND
11327	Oct 93	Borders	J	F	ND	ND	ND	ND
11342	Oct 93	Norfolk	J	F	ND	ND	ND	ND
11346	Oct 93	Norfolk	J	F	ND	ND	ND	ND
11347	Oct 93	H & W	J	г М	ND	ND	ND	ND
11353	Oct 93	Sussex	J	F	ND	ND	ND	ND
1375	Oct 93	Strathclyde	A	F	ND	ND	ND	ND
1386	Oct 93	Dyfed	J	F	ND	ND	0.020	ND
1401	Oct 93	Clwyd	J	M	ND	ND	ND	ND
1357	Nov 93	Kent	J	F	ND	ND	ND	ND
1365	Nov 93	Dyfed	J	M	ND	ND	ND	ND
1366	Nov 93	Powys	J	F	ND	ND	ND	ND
1380	Nov 93	Lines	J	F	ND	ND	ND	ND
1382	Nov 93	Kent	J	F	ND	ND	0.017	ND
1383	Nov 93	Essex	J	M	ND	0.015	ND	ND
1390	Nov 93	Kent	J	F	ND	ND	ND	ND
1391	Nov 93	Northants	J	M	ND ND	0.160	0.039	ND
1392	Nov 93	Highland	J	M	ND ND	ND	ND	ND
396	Nov 93	Wiltshire	J	7. TAT	ND ND	0.056	ND	ND
398	Nov 93	Powys	J	F	ND ND	ND	ND	ND
413	Nov 93	<u> </u>	J	F	ND ND	ND	ND	ND
415	Nov 93	Wilts	J	M		ND	ND	ND
462	Nov 93	Norfolk	J	F	ND	ND	ND	ND
463	Nov 93	Norfolk	J	M	ND ND	ND	ND	ND
			J	TAT	ND	ND	ND	ND

Specin No.	l lota	County	Age	Sex	brod	difen	brom	floc
11642	Nov 93	Oxfordshire	J	F	AID	0.5		et/
11409	Dec 93	Lothian	A		ND	0.019	ND	ND
11410	Dec 93	Gtr Manchester	J	M	ND	ND	ND	ND
11411	Dec 93	Somerset	J -	M	ND	ND	0.091	ND
11423	Dec 93	Powys	J	- M	ND	ND	ND	ND
11645	Dec 93	Oxfordshire	A	M	ND	ND	ND	ND
11437	Jan 94	D & G	J	M F	ND	ND	ND	ND
11439	Jan 94	Anglesey	J	г М	ND	ND	ND	ND
11446	Jan 94	Hants	J	M	ND	ND	ND	ND
11448	Jan 94	Anglesey	A	M F	ND	0.025	ND	ND
11472	Jan 94	Lines	J	F	ND	0.029	ND	ND
11449	Feb 94	Warwicks	J	F	ND	ND	ND	ND
11451	Feb 94	Oxon	J	r F	ND	0.011	ND	ND
11456	Feb 94	Strathclyde	J		ND	ND	ND	ND
11464	Feb 94	Worcs	A	M F	ND	ND	ND	ND
11475	Feb 94	Yorks	J	r F	ND	0.019	ND	ND
11484	Feb 94	Wilts	A	r F	ND	ND	ND	ND
11494	Feb 94	Cornwall	A	r F	ND	ND	ND	ND
11646	Feb 94	Oxfordshire	J		ND	ND	ND	ND
11487	Mar 94	Powys	A	M F	ND	0.012	ND	ND
11491	Mar 94	Highland	J		ND	ND	ND	ND
11493	Mar 94	Notts	J	M	ND	ND	0.098	ND
11496	Mar 94	Isle of Man	J	M F	ND	ND	ND	ND
11509	Mar 94	Lines	A	г F	ND	ND	ND	ND
11510	Mar 94	Lines	J		ND	ND	ND	ND
11512	Mar 94	Oxon	A	M	ND	ND	ND	ND
11515	Mar 94	Warwicks	A	F	0.024	ND	0.614	ND
11518	Mar 94	Glos	J	F	ND	ND	ND	ND
1643	Mar 94	Oxfordshire	J	F	ND	ND	ND	ND
1523	Apr 94	Cheshire	J	F	ND	0.025	ND	ND
1533	Apr 94	Lincolnshire	J	F	ND	ND	ND	ND
1534	Apr 94	Worcestershire	=:	20	ND	ND	0.045	ND
1539	Apr 94	Herefordshire	-	=	ND	0.026	ND	ND
1546	Apr 94	Essex	- т	-	ND	ND	ND	ND
1548	Apr 94	Anglesey	J	M	ND	0.007	0.550	ND
1558	May 94	Devon	J	F	ND	ND	ND	ND
1564	May 94	Wiltshire	J	M	ND	ND	ND	ND
1586	Jun 94	Wiltshire	J	M	ND	0.006	0.118	ND
1618	Aug 94	Grampian	J	M	ND	ND	ND	ND
1632	Aug 94	Hampshire	J	M	ND	ND	ND	ND
	1 Aug 7 T	Trambanne	J	F	ND	ND	ND	ND

Specin No.	l lata	County	Age	Sex	brod	difen	brom	floc
11638 11639 11641 11644 11654 11661 11674	Sep 94 Sep 94 Sep 94 Sep 94 Oct 94 Oct 94 Nov 94	Suffolk W. Midlands Oxfordshire Oxfordshire Isle of Man Lancashire Oxfordshire	1 1 1 1 1 1	M F M F M F	ND ND ND ND ND ND ND	ND 0.052 ND ND ND ND 0.045 ND	ND ND ND ND ND ND 0.628 ND ND	ND ND ND ND ND ND
11675 11676 11677 11678 11679 11686 11692 1695	Nov 94 Nov 94 Nov 94 Nov 94 Nov 94 Nov 94 Nov 94	Beds Cambs Channel Islands Channel Islands Oxfordshire Lincs Lincs Wilts	1 1 1 = = 1 1	M F - M F M	ND ND ND ND ND ND ND ND ND	ND 0.007 ND ND ND 0.024 ND	ND ND ND 0.079 ND 0.028 ND	ND
1703 1704 1707 1712 1714 1721 1722	Nov 94 Dec 94 Dec 94 Dec 94 Dec 94 Dec 94 Dec 94	Dyfed Norfolk Strathclyde Wilts Oxfordshire Gwynedd Gwynedd	J J A J J J	F F M M M M	ND ND ND ND ND ND ND ND ND	ND 0.212 ND ND ND ND ND	ND ND ND ND ND 0.369 ND ND	ND

Table 11. Incidence of rodenticide residues in Barn Owls in relation to usage on farms.

	Number sampled	Number of occurrences of second generation rodenticides	Difenacoum	Numb Bromadiolone	Number (%) with: one Brodifacoum	Flocoumafen
Barn Owls	353	137	70 (62%)	48 (42%)	13 (12%)	6 (5%)
arable crops 1988	565	431	269 (62%)	138 (32%)	77 (50)	
Farms growing grass* and fodder crops	459	404	217 (54%)	151 (37%)	30 (7%)	6 (1 5%)

^{*}From Olney et al. 1991a, 1991b.

Table 12. Frequency of Barn Owl contamination by second generation rodenticides at different levels.

Liver Residue range	Number of owls containing residues of:						
mg kg ⁻¹	Difenacoum	Bromadiolone	Brodifacoum	Flocoumafen			
3			-	-			
0.001 - 0.009	18	1	4	2			
0.01 - 0.099	45	20	6	3			
0.1 - 0.999	7	25	3	1			
> 1.0	0	2	0	0			

JNCC/NERC CONTRACT HF3/08/01 JNCC PROJECT 018 (Contract F71-12-153) ITE PROJECT TO8054c5

0

0

0

0

0

Annual report to the Joint Nature Conservation Committee

WILDLIFE AND POLLUTION

Part 9 Incident investigations during 1994

P Freestone, M C French, H Malcolm, D Osborn, J Wright & C Wyatt

9 INCIDENTS INVESTIGATED DURING 1994-95

9.1 Introduction

Two small wildlife incidents were investigated during the reporting year, the first involving swans from Kent and the second involving moorhens from Cambridgeshire.

9.2 Kent swan mortalities

During late November / early December 1994, two mute swan (Cygnus olor) carcasses were found in the River Stour by the NRA. The carcasses were of a juvenile and an adult. The adult carcass was too decayed for detailed examination, although some sub-cutaneous fat was present. The juvenile carcass had no signs of injury or damage. There was some subcutaneous fat present, with abundant mantle fat. Haemorrhaging around the liver was evident. Livers from both carcasses were analysed for the presence of heavy metals, organochlorine insecticides and PCBs. The kidneys were also analysed for the presence of heavy metals.

Organochlorines were present in trace amounts far too low to have caused death (Table 13). Heavy metal concentrations were not quantified, although the ICP-MS scan suggested that they were not present at levels thought to exert toxic effects. The cause of the deaths was therefore unknown.

9.3 Cambridgeshire moorhen mortalities

During December 1994, three moorhens (*Gallinula chloropus*) were found dead in the same locality, near Huntingdon. Two carcasses were received at Monks Wood. They appeared to be in good condition, with abundant sub-cutaneous and depositional fat. The only abnormality evident was haemorrhaging around the liver of one individual. Livers from both carcasses were analysed for the presence of heavy metals, rodenticides, organochlorine insecticides and PCBs. Fat samples were analysed for organochlorine insecticides and PCBs.

Heavy metal concentrations were not quantified, although the ICP-MS scan suggested that they were not present at levels thought to exert toxic effects.

The rodenticides bromadiolone, difenacoum, flocoumafen and brodifacoum were not detected, and organochlorine levels were too low to suggest death by organochlorine poisoning (Table 13). The cause of death therefore remains unknown.

Table 13. trace in the region in which PCB congeners normally occur. HCH refers to hexachlorocyclohexane. corresponding to those found in Aroclor 1254. PCB-TOT is the total PCB expressed using all the peaks found in the GC wildlife incident investigations. Data are expressed as ranges. PCB-MAT is the total PCB expressed using only the peaks Levels of organochlorine compounds (mg/kg wet weight) in livers and subcutaneous fat from birds received as part of

Cambridgeshire	Cambridgesnire	A A COLL	Area
moorhen	moorhen	mute swan	Species
2	2) K	Numbers
fat	liver	liver	Tissue
<0.003	<0.003	<0.003	НСВ
<0.003	<0.003	< 0.003	о-НСН
<0.002- 0.016	<0.002 - 0.014	<0.002- 0.002	у-НСН
0.175 - 0.229	0.101 - 0.170	0.002 - 0.004	DDE
0.114 - 0.193	0.023 - 0.029	0.023 = 0.026	НЕОД
<0.004	0.014 - 0.028	<0.004	TDE
< 0.004	<0.004	< 0.004	DDT
<0.02	< 0.02	< 0.02	PCB- MAT
2.121 - 2.678 Y	0.031 - 0.172	0.102 - 0.119	PCB- TOT

ITE has administrative headquarters north and south, and the geographical distribution of its 250 staff in six Research Stations throughout Britain allows efficient use of resources for regional studies and provides an understanding of local ecological and land use characteristics.

This report is an official document prepared under contract between the customer and the Natural Environment Research Council. It should not be quoted without the permission of both the Institute of Terrestrial Ecology and the customer.

ITE NORTH

0

3

(

Edinburgh Research Station and ITE (N) Directorate

and ITE(N) Directorate Bush Estate Penicuik Midlothian EH26 OQB Tel: 031 445 4343; Telex 72579

Fax: 031 445 3943

Banchory Research Station

Hill of Brathens Glassel Banchory Kincardineshire AB31 4BY Tel: 033 02 3434 Fax: 033 02 3303

Merlewood Research Station

Grange-over-Sands Cumbria LA11 6JU Tel: 05395 32264; Telex 65102 Fax: 05395 34705

ITE SOUTH

Monks Wood

and ITE(S) Directorate
Abbots Ripton
Huntingdon
Cambs PE17 2LS
Tel: 048 73 381; Telex 32416
Fax: 048 73 467

Bangor Research Unit

University College of North Wales Deiniol Road Bangor Gwynedd LL57 2UP Tel: 0248 370045; Telex 61224

Fax: 0248 355365

Furzebrook Research Station Wareham

Dorset BH20 5AS Tel: 0929 551518 Fax: 0929 551087

The ITE Research Marketing Officers for ITE North and South are based at Banchory and Monks Wood, respectively.

9

0

0

(

(

Œ

Œ

Œ

Œ

Œ